Overview of TSUNAMI

Tools for Sensitivity and UNcertainty Analysis Methodology Implementation

What is TSUNAMI?

- Tools for Sensitivity and UNcertainty Analysis Methodology Implementation
- TSUNAMI utilizes first-order-linear perturbation theory to produce the sensitivities of a computed k_{eff} value to constituent cross-section data.
- The energy-dependent sensitivity data for each reaction of each nuclide in a system model can be quickly computed using TSUNAMI's 1-D and 3-D analysis tools.
- These sensitivity data can be coupled with crosssection-covariance data to produce an uncertainty in k_{eff} due to uncertainties in the evaluated nuclear data.
- Provides an advanced method to assess system similarity based on sensitivity and uncertainty data.

TSUNAM TSUNAMI Development History

- Current ORNL work in sensitivity and uncertainty (S/U) analysis began in 1997
- ORNL had previously performed much S/U work in fast reactor analysis in 1970s - 1980s (FORSS)
 - Eigenvalue and generalized perturbation theory
 - Depletion perturbation theory
 - Shielding
- Foundation for current work presented in NUREG/CR-6655 documents, 1999 (3-year NRC funding)
- Three-dimensional Monte Carlo capability developed in 1999 (3-year EMSP funding)
- Additional research is ongoing (DOE NCSP, DOE EM, NRC)

Perturbation Theory

The relative change in k due to a small perturbation in a macroscopic cross section, Σ , of the transport operator at some point in phase space r can be expressed as

$$S_{k,\Sigma(r)} \equiv \frac{\Sigma(r)}{k} \frac{\partial k}{\partial \Sigma(r)} = -\frac{\Sigma(r)}{k} \frac{\left\langle \phi^{\dagger}(\xi) \left(\frac{\partial A}{\partial \Sigma(r)} \right) - \frac{1}{k} \frac{\partial B}{\partial \Sigma(r)} \right) \left(\frac{(\xi)}{\xi} \right) \right\rangle}{\left\langle \phi^{\dagger}(\xi) \frac{1}{k^{2}} B \left[\Sigma(\xi) \right] \phi(\xi) \right\rangle}$$

where

 ϕ = neutron flux;

 ϕ^{\dagger} = adjoint neutron flux

 $k = k_{eff}$, the largest of the eigenvalues

A = operator that represents all of the transport equation except for the fission term

B = operator that represents the fission term of the transport equation

 Σ = problem-dependent resonance self-shield macroscopic cross sections

 ξ = phase space vector; and

⟨ ⟩ indicate integration over space, direction and energy variables.

TSUNAMI-3D Sequence

- Eigenvalue perturbation theory calculations based on KENO V.a multigroup Monte Carlo transport.
- Problem-dependant resonance self-shielded cross sections and implicit effect computed with 1D continuous energy transport code – CENTRMST.
- Cross section processing, forward and adjoint transport calculations, sensitivity coefficient generation and uncertainty analysis automatically run from a single input.

TSUNAMI-3D Sequence

 Uses 3D Monte Carlo calculations (KENO V.a) to score spherical harmonic moments of forward and adjoint flux:

$$\tilde{\phi}_{g,i}^{f} = \frac{\sum_{k=1}^{K} Y^{f}(\Omega_{\mathbf{k}}) w_{k} T_{k,i}}{V_{i} \sum_{k=1}^{K} w_{k}}$$

tracklength estimator for ℓ_{th} moment, in group-g, interval-i

 Folds forward and adjoint moments to produce nuclide, energy & cross section dependent sensitivity profiles by spatial zone:

sensitivity coefficient for capture

$$S_{c,g}(z) \cong -\frac{\sigma_{c,g}}{D} \left\langle \Phi(\mathbf{r}, E, \Omega) \Phi^*(\mathbf{r}, E, \Omega) \right\rangle$$

$$\to \frac{-\sigma_{c,g}}{D} \sum_{i \in z} \sum_{\lambda} \widetilde{\phi}_{g,i}^{\lambda} \widetilde{\phi}_{g,i}^{*\lambda} V_i$$

Complete Sensitivity Coefficient Includes Effects of Changes in Self-Shielded Cross Sections

- The "explicit" effect is sensitivity of k_{eff} to changes in multigroup cross sections appearing transport equation
- The "implicit" effect is sensitivity of k_{eff} to cross section perturbations caused by changes in self-shielding
 - Example: perturbation in $\sigma^{(H)}$ changes self-shielded $\sigma^{(U238)}$ => cross section data may be sensitive to changes in other data

$$S_{\alpha_{x};\alpha_{j}} = \frac{\alpha_{j}}{\alpha_{x}} \frac{\partial \alpha_{x}}{\partial \alpha_{i}}$$

 α_x = shielded cross section α_j = data used in resonance calculation

 The implicit effect can be propagated to k_{eff} via the chain rule for derivatives and combined with the explicit to form the complete sensitivity coefficient.

Improved Results TSUNAM by Including Implicit Effect

U(2)F₄ "Green Blocks" critical experiment H/X = 294

Nuclide	Reaction	Direct Perturbation Sensitivity	TSUNAMI Sensitivity	% Diff.	TSUNAMI Sensitivity (no implicit)	% Diff.
¹ H	total	0.22	0.22	0%	0.29	27%
¹⁹ F	total	0.04	0.04	0%	0.05	18%
235U	total	0.25	0.25	0%	0.25	0%
238U	total	-0.21	-0.21	0%	-0.29	39%

Sensitivity for ¹H Elastic, TSUNAM with Implicit Effect

GeeWiz Input GUI - TSUNAMI-3D

KENO3D Model Visualization

HTML Output

General Information

Input Data

Results

- Energy, Region and Mixture Integrated Sensitivity
 Coefficients for this Problem
- Energy and Region Integrated Sensitivity Coefficients for this Problem
- Sensitivity Coefficients by Region
- Total Sensitivity Coefficients by Nuclide
- Total Sensitivity Coefficients by Mixture
- · Sensitivity Data Plot
- Problem Characterization
- · Uncertainty Information

SAMS - Sensitivity Data Plot u(2)f4 h/x=294

Plot of Sensitivity Data

Double-click an item on right side of window to plot, or select multiple items and right click to plot.

Javapeño for SCALE 5.1

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

JT-BATTELL

Applications of TSUNAMI-3D to

TSUNAM Complex Models

- Burnup Credit Cask Model
 - 32 PWR fuel assemblies in flooded cask
 - 18 axial burnup zones
 - Burned to 40 GWd/MTU; Cooled for 5 years
 - BORAL™ plates around each assembly
 - Cask filled with water
- Commercial Reactor Criticals (CRC)
 - Startup data from PWRs (Crystal River)
 - 1/2 core models
 - Each pin explicitly modeled with 18 axial zones
 - Sensitivity coefficients for ~47,000 nuclides, ~420,000 44-group profiles

Uncertainty Propagation

Uncertainty in k_{eff} of a single system

Procedure to GenerateCovariance Library for Applications

- Process all ENDF/B-VI covariances (49 nuclides)
- ENDF/B-V covariances for 1 nuclide (¹0B)
- JENDL 3.3 covariances for 7 nuclides
- CENDL 2 covariance for 2 nuclides
- JEF 3.1 covariances for 1 nuclide
- Fission spectrum, χ, data generated for 9 nuclides
- Approximate covariances of other missing nuclides by integral measurement uncertainties - Mughabghab data (>250 nuclides)
 - σ_c , σ_f , υ covariance for E<0.5 eV based thermal data uncertainty, with full correlation
 - σ_c , σ_f covariance for 0.5<E<5E3 eV based on resonance integral, with full correlation
 - σ_s covariance for moderators based on uncertainty in potential cross section, fully correlated

TSUNAM

Sample SCALE 5.1 Covariance

TSUNAM Data

Uncertainty Propagation (con't)

• Uncertainty in k_{eff} for multiple systems
Diagonal elements are

variance in each system

$$= \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{21}^2 & \sigma_{22}^2 & \sigma_{23}^2 & \sigma_{24}^2 \\ \sigma_{31}^2 & \sigma_{32}^2 & \sigma_{33}^2 & \sigma_{34}^2 \\ \sigma_{41}^2 & \sigma_{42}^2 & \sigma_{43}^2 & \sigma_{44}^2 \end{bmatrix}$$

Off-diagonal elements are covariance between two systems

Correlation coefficient between two systems:

$$c_k = \frac{\sigma_{21}^2}{\sqrt{\sigma_{11}^2} \sqrt{\sigma_{22}^2}}$$

²³⁹Pu Fission Sensitivity

Trend with $c_k \ge 0.8$ USL = 0.90

Composite Sensitivity Data

 Coverage produced by several experiments can be "built up" as a composite sensitivity profile.

Minimum Differences

 Difference between sensitivity profiles for the application and the composite show portion of application data that is not covered by experiments.

Penalty Assessment

- Penalty is an additional margin to subcriticality due uncertainty in cross sections that are not covered by benchmarks
- Penalty can be assessed by propagating uncovered sensitivity data to k_{eff} through cross-section-covariance data.
- Calculation is similar k_{eff} uncertainty due to cross sections, but minimum differences (Z_a) replace application sensitivities.

$$\Delta k_{eff} / k_{eff} = \sqrt{\mathbf{Z_a C_{\alpha\alpha} Z_a}^{\dagger}}$$

Reduced uncertainties

Application Uncertainty 0.77%

Covariar	ice Matrix	% ∆k/k
Nuclide-Reaction	Nuclide-Reaction	Due to this Matrix
²³⁵ U nubar	²³⁵ U nubar	6.3800E-01 ± 2.2348E-05
²³⁵ U n,gamma	²³⁵ U n,gamma	3.0069E-01 ± 2.0102E-05
²³⁸ U n,gamma	²³⁸ U n,gamma	2.3836E-01 ± 1.7811E-05
²³⁵ U fission	²³⁵ U fission	1.6262E-01 ± 1.3586E-05
¹ H elastic	¹ H elastic	7.0789E-02 ± 6.6674E-04
¹ H n,gamma	¹ H n,gamma	6.7436E-02 ± 4.2071E-06
Zr n,gamma	Zr n,gamma	5.7816E-02 ± 9.1843E-06
²³⁸ U fission	²³⁸ U fission	4.3381E-02 ± 5.0644E-06

Penalty Uncertainty

(due to uncovered sensitivities)

0.20%

Covarian	ce Matrix	% Δk/k				
Nuclide-Reaction	Nuclide-Reaction	Due to this Matrix				
²³⁵ U chi	²³⁵ U chi	1.7757E-01 ± 2.2553E-05				
Zr n,gamma	Zr n,gamma	5.7816E-02 ± 9.1843E-06				
²³⁵ U nubar	²³⁵ U nubar	5.6465E-02 ± 6.6658E-06				
²³⁸ U n,n'	²³⁸ U n,n'	2.8220E-02 ± 1.6134E-04				
¹ H n,gamma	¹ H n,gamma	2.7224E-02 ± 4.3928E-06				
²³⁵ U fission	²³⁵ U fission	1.7398E-02 ± 6.9908E-06				
¹⁶ O n,alpha	¹⁶ O n,alpha	1.2838E-02 ± 1.2354E-05				
¹ H elastic	¹ H elastic	8.3229E-03 ± 2.0752E-03				

TSURFER

Performs Generalized Linear Least-Squares (GLLS)
Analysis of Design System and Benchmark Data Base

- Systematic procedure to consolidate calculations with measured responses
- Computes "best" cross-section adjustments to minimize differences in computed and measured benchmark responses
- Propagation of data perturbations to the design system response provides estimate of computational bias and uncertainty
- Allows correlations in experimental uncertainty components; filtering of benchmarks based on similarity; edit of adjusted data and covariances

Bias Prediction Versus Number of Similar Systems (c_k > 0.9) in GLLS Adjustment

Reactivity Sensitivity and Uncertainty Analysis

$$S_{\rho,\alpha} = \frac{\alpha \partial \rho_{1\to 2}}{\rho_{1\to 2} \partial \alpha}$$

Eigenvalue Differencing Approach

$$S_{\rho,\alpha} = \left\{ \frac{\left\langle \Phi_{1}^{*} \left(\frac{\alpha \partial L_{1}}{\partial \alpha} - \lambda_{1} \frac{\alpha \partial P_{1}}{\partial \alpha} \right) \Phi_{1} \right\rangle}{\rho_{1 \to 2} \left\langle \Phi_{1}^{*} P_{1} \Phi_{1} \right\rangle} - \frac{\left\langle \Phi_{2}^{*} \left(\frac{\alpha \partial L_{2}}{\partial \alpha} - \lambda_{2} \frac{\alpha \partial P_{2}}{\partial \alpha} \right) \Phi_{2} \right\rangle}{\rho_{1 \to 2} \left\langle \Phi_{2}^{*} P_{2} \Phi_{2} \right\rangle} \right\}$$

Uncertainty in Reactivity
$$\sigma_{\rho}^{2} = \left(\frac{\lambda_{1}\sigma_{\lambda_{1}}}{\rho_{1\to 2}}\right)^{2} + \left(\frac{\lambda_{2}\sigma_{\lambda_{2}}}{\rho_{1\to 2}}\right)^{2} - 2\frac{\sigma_{\lambda_{1},\lambda_{2}}}{\sigma_{\lambda_{1}}\sigma_{\lambda_{2}}}\left(\frac{\lambda_{1}\sigma_{\lambda_{1}}}{\rho_{1\to 2}}\right)\left(\frac{\lambda_{2}\sigma_{\lambda_{2}}}{\rho_{1\to 2}}\right)$$

Practical Uses of TSUNAMI

- Validation/Experiment Applicability Studies
 - Yucca mountain, Burnup credit, MOX fresh fuel, MOX fuel fabrication facility, Poisoned basket studies
- Experiment Design Optimization
 - >5 wt-% fuel
 - NERI with Areva, Sandia National Laboratories, and University of Florida
 - 7% Experiments to be assembled at SNL January 2007
 - Additional >5% experiment design work for Toshiba
 - Space Nuclear Power General Physics Experiments
- Atomic Energy of Canada, Limited ACR-1000 Code Validation

Burnup Credit: c_k for GBC-32 with >1100 Critical Experiments

Burnup Credit: c_k for GBC-32 with **TSUNAM** >1100 Critical Experiments

Burnup Credit: Rh-103 Sensitivity from SNL BUCCX and GBC-32 Cask

Application to ACR-700 CVR

ACR-700 Uncertainties

TABLE V
Response Uncertainties Due to Available Nuclear Data Covariances

Response	Relative Standard Deviation (%)	
Multiplication factor for state 1	0.80	
Multiplication factor for state 2	0.84	
Coolant void reactivity (CVR)	49.8	

ORNL Production-Level S/U TSUNAM Capabilities

- Publicly released TSUNAMI tools in SCALE 5.0
- Specifically mentioned in NRC's ISG-10 for criticality code validation
- **TSUNAMI** training for criticality code validation
 - 8 multiday classes taught since 2004, ~150 participants
 - 6-hour tutorial presented at 2004 ANS annual meeting
 - Next training course in November 2006

Possible additions to TSUNAMI

- 2D Deterministic Eigenvalue Capability
- Revitalization of ORNL Generalized Perturbation Theory Capabilities for Reactor Physics Responses
 - 1D, 2D, 3D deterministic (refreshed)
 - 3D Monte Carlo (new R&D required)
- Resonance self-shielding implicit effect for cell homogenization and double-heterogeneity calculations
- 2D continuous energy deterministic code for resonance self shielding
- Perturbation theory for continuous energy Monte Carlo calculations
- Porting codes to large-scale computers

